Extensions 1→N→G→Q→1 with N=C23 and Q=C3xDic3

Direct product G=NxQ with N=C23 and Q=C3xDic3
dρLabelID
Dic3xC22xC696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C23 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C23:(C3xDic3) = C6xA4:C4φ: C3xDic3/C6S3 ⊆ Aut C2372C2^3:(C3xDic3)288,905
C23:2(C3xDic3) = C3xC23.7D6φ: C3xDic3/C32C4 ⊆ Aut C23244C2^3:2(C3xDic3)288,268
C23:3(C3xDic3) = C2xDic3xA4φ: C3xDic3/Dic3C3 ⊆ Aut C2372C2^3:3(C3xDic3)288,927
C23:4(C3xDic3) = C6xC6.D4φ: C3xDic3/C3xC6C2 ⊆ Aut C2348C2^3:4(C3xDic3)288,723

Non-split extensions G=N.Q with N=C23 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C23.(C3xDic3) = C3xA4:C8φ: C3xDic3/C6S3 ⊆ Aut C23723C2^3.(C3xDic3)288,398
C23.2(C3xDic3) = C3xC12.D4φ: C3xDic3/C32C4 ⊆ Aut C23244C2^3.2(C3xDic3)288,267
C23.3(C3xDic3) = A4xC3:C8φ: C3xDic3/Dic3C3 ⊆ Aut C23726C2^3.3(C3xDic3)288,408
C23.4(C3xDic3) = C3xC12.55D4φ: C3xDic3/C3xC6C2 ⊆ Aut C2348C2^3.4(C3xDic3)288,264
C23.5(C3xDic3) = C6xC4.Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C2348C2^3.5(C3xDic3)288,692
C23.6(C3xDic3) = C2xC6xC3:C8central extension (φ=1)96C2^3.6(C3xDic3)288,691

׿
x
:
Z
F
o
wr
Q
<